学业成就与学业风险的预测——基于学习分析领域中预测指标的文献综述

欢迎引用:

范逸洲,汪琼.学业成就与学业风险的预测——基于学习分析领域中预测指标的文献综述[J].中国远程教育,2018(01):5-15+44+79.


学习分析作为一个从数据中建构意义的研究领域,在过去几年的发展中备受学界关注。学习分析领域的核心问题之一是如何利用数据预测学习者的学业成功或者失败?围绕这一问题,国内外学者开展了大量实证研究,取得了丰富的研究成果。但是,预测指标研究的相关综述却存在一定局限性,如忽视指标适用的学习场所和情境、模糊指标匹配的学习任务类型和参与主体,或是有些综述缺失了领域内的代表性学者、研究和应用。因此,本文通过系统的文献检索和综述,从预测指标适用的学习场所和任务类型出发,梳理了倾向性指标、人机交互指标和人际交互指标三种类型的常用预测指标。本文详细地介绍了过往学业表现、初始知识、学习驱动力、正面或负面学习行为、学习者情感状态、知识表征事件、人际交互频次、社群意识等一系列得到广泛验证的关键预测指标,并将按照"学校场所和工作场所"和"个体学习和群体学习"两个维度划分的四个象限,在每个象限中选取一个典型的学习分析系统进行剖析,这些典型系统是Signals系统、SNAPP系统、Learn-B系统和Cohere系统。本文最后总结了预测分析相关研究的特点和趋势,并指明了未来研究与实践的注意事项和潜在的研究方向。

教育部在线教育研究中心2016年度在线教育研究基金(全通教育)重点项目“基于学习分析的MOOC教学设计原则研究”(课题编号:2016ZD101)成果;

教育大数据; 学习分析; 预测分析; 预测指标; 学业成就; 学业风险;

10.13541/j.cnki.chinade.2018.01.001

G420

倾向性指标和行为表现指标预测能力变化

普度大学Signals系统应用①

SNAPP工具对交互行为的可视化表达唤起或者提高员工的社群

Learn-B主要用户界面截图

Cohere内一组学术争辩的观点分布及联系13